
Abstract. We have performed ab initio fourth-order
Møller–Plesset perturbation theory calculations in the
framework of the supermolecule approach on the
vertical excitation spectra of the weakly bound van der
Waals N2–He dimer. They indicate a ‘‘T-shaped’’
stablest ground N2(X

1Sg
+))He(1S) electronic state with

a well depth, De, of 21.63 cm)1 at a minimum distance,
Re, of 3.44 Å and zero-point vibration correction, Do,
of 7.07 cm)1. They also indicate a ‘‘T-shaped’’ stablest
excited conformer with Re=3.25 Å, De=36.85 cm)1

and Do=17.06 cm)1 for the N2(B
3Pg)–He(1S) triplet

electronic level. In order to investigate the use of less-
demanding correlation methods, test density functional
theory calculations using the mPW1PW exchange–
correlation functional are also presented for compari-
son.
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Introduction

Recent advances in the determination of reliable inter-
action energy (IE) surfaces of van der Waals (vdW)
molecules have benefited from highly sophisticated
molecular beam techniques and the implementation of
high-resolution laser-based spectroscopic experiments
[1, 2, 3, 4]. Accurate surfaces are now known for the
vdW interaction among rare gases [5] and between H2

and rare gases [6]. The N2–rare gas vdW interaction has
received a similar amount of attention, since this system

constitutes a good prototype for more complex molec-
ular species interacting with rare gases. As N2–He is the
simplest complex to study, it has become a benchmark
system for dynamic properties of the gaseous state of the
mixture [7]. Since it is the major component of the
earth’s atmosphere, knowledge of N2 interacting in
various gaseous media is important for an understand-
ing of phenomena such as auroras and airglows.

The availability of powerful computers and the
development of efficient computational algorithms have
made possible the quantum mechanical study of vdW
interactions of small to medium-size molecules [8, 9].
There are two main methods for the ab initio calculation
of vdW interactions. The first regards the interaction
between the subsystems as a perturbation and partitions
the energy into terms such as electrostatic, repulsion,
polarization, induction and dispersion. The second ap-
proach considers the interacting subsystems as a super-
molecule [10, 11]. Since all the highly effective ab initio
methods developed for single-molecule calculations are
in principle applicable without change, we use the
supermolecule approach at present.

Recent developments in nonlinear optics have pro-
vided tunable and coherent vacuum UV radiation to
obtain high-resolution fluorescence electronic excitation
spectra. This technique, combined with supersonic beam
expansion techniques to form cold vdW molecules, has
been shown to be a powerful tool for studying inter-
atomic potentials of electronically excited rare gas vdW
dimers, but the application of these combined tech-
niques to study the intermolecular interaction for N2–He
in its excited electronic states has not been reported so
far. There was, nevertheless, an experimental study on
the cross-sections for rotationally inelastic collisions of
N2(B

3Pg) with Ar [12].
In the present study we are able to describe the ver-

tical excitation electronic spectra of the diatomic van der
Waals N2–He molecule, in its ‘‘T shape’’ stablest
ground-state and excited-state structure [13, 14], using
standard perturbation methods of quantum chemistry.
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Despite many technical difficulties, ab initio methods
offer a sound basis for the calculation of vdW potential-
energy surfaces valid over the whole range of molecular
distances and orientations.

Theoretical method

The interaction potential was obtained in the framework of the
supermolecule approach at the Hartree–Fock self-consistent-field
(HF-SCF) and Møller–Plesset perturbation theory (MP) levels of
approximation for the total energy

E¼EHF�SCFþEMP; ð1Þ

where the correlation energy is split into contributions that are due
to different orders of perturbation:

EMP¼EMP2þEMP3þEMP4: ð2Þ

The IE has been defined as

IEðRÞ ¼EðN2�He;RÞ�EðN2 � X ;RÞ�EðX �He;RÞ; ð3Þ

where E(N2–X; R) and E(X–He; R) are used to indicate that the
monomer energies are derived in the dimer-centered basis set
(DCBS). This amounts to applying the counterpoise procedure
of Boys and Bernardi [15] to correct for the basis set superpo-
sition error (BSSE), at both the HF-SCF and the correlation
levels of approximation at each molecular configuration R. De-
spite the long-lasting controversy on its credibility, the function
counterpoise method of Boys and Bernardi proves to be the
correct approach [16]. Through fourth order in the correlation
perturbation, the IE in Eq. (3) can be expressed through fourth
order in the perturbation at any particular geometrical configu-
ration R:

IEMPð4Þ¼ IEHF�SCFþIEMP2þIEMP3þIEMP4: ð4Þ

Currently, going beyond the full fourth-order MP treatment
does not seem feasible. It has also been shown that in order to
obtain quantitatively meaningful results incomplete higher-order
MP calculations must be avoided [17]; thus, the complete fourth-
order MP approximation was adopted in the present study. With
the linked cluster theorem automatically satisfied for each order of
perturbation and this MP scheme being size-consistent [18], it
represents one of the best and more economical methods available
for reliable calculation of IEs within the supermolecule approach.
It also has several advantages compared to other methods owing to
its uniform and systematic treatment of the electron correlation
contributions [19].

The basis set used for N in the present contribution is based on
the medium-sized [10.6.4/5.3.2] Gaussian-type orbital (GTO) one-
particle basis set of contracted GTO (CGTO) functions devised by
Sadlej [20] (POL basis set), which accounts for the diffuseness of the
valence part of the wave function, leads to the correct calculation of
intermolecular electrostatic forces and to a negligible secondary
BSSE [21]. For He we used the [10.2/5.2] GTO/CGTO basis de-
scribed by Garrison et al. [22] (referred to as the GLS basis set in
the present study) that is designed to describe the He polarizability
accurately. They were complemented with a set of bond functions
(BFs) taken from Tao and Pan [23]: 3s (a=0.9, 0.3, 0.1), 3p (a=0.9,
0.3, 0.1), 2d (a=0.6, 0.2), 1f (a=0.3). The BFs were placed at the
midpoint of the vector R, which joins He with the center of mass of
N2. A recent report on the use of BFs and related problems was
made by Tao [24].

The necessary energies were calculated using the Gaussian 98
molecular package [25] for the Gaussian integrals, HF eigenvectors
and energies, molecular properties, four-index molecular integral
transformation and MP calculations.

Results and discussion

Ground N2 (X
1Sg

+)–He(1S) state

High-level ab initio calculations, in the framework of the
supermolecule approach, were performed to determine
the conformational structure of the N2–He vdW dimer
in its ground electronic state at the restricted HF-SCF
and fourth-order MP levels of approximation [18, 19]
for the total energy. The IE through fourth order in MP
is obtained as

IEMPð4Þ¼ IERHF�SCFþIEMP2þIEMP3þIEMP4: ð5Þ

The final MP(4) counterpoise-corrected IEs were
computed according to Eq. (5) for all possible config-
urations of N2 and He. In the supermolecule calcula-
tions, N2 was kept rigid at its experimental equilibrium
bond length of 2.068ao. The dimer geometry is specified
by R, which represents the distance between the center
of mass of N2 and He, and by the polar angle of
orientation, b, of the vector along the N2 bond with
respect to the vector along R. The equilibrium bond
distance, Re, and well depth, De, are obtained by fitting
the calculated fully ab initio MP IE points to an
eighth-order polynomial in the stretching coordinate R,
analytically continued with a seventh-order polynomial
on 1/R (from 1/R6 to 1/R12) in the asymptotic R fi ¥
region.

The computed minimum IE curve for the ground
state of N2–He is depicted in Fig. 1, which shows how
De changes with b as compared to recent results from
Hu and Thakkar [13]. This figure shows the T-shaped
structure to be the stablest configuration, with a De of
21.63 cm)1 at an Re of 3.44 Å for the present calcula-
tion, in close agreement with a De value of 20.82 cm)1 at
an Re value of 3.43 Å as found by Hu and Thakkar [13]
for the same geometry. These values are also in good
agreement with previous empirical or semiempirical
calculations by Beneventi et al. [14].

Fig. 1. Angular dependence of De for the ground N2(X
1Sg

+)–
He(1S) electronic state
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Excited N2(B
3Pg)–He(1S) states

We have considered the excited N2(B
3Pg)–He(1S)

fi N2(X
1Sg

+)–He(1S) transition as our first choice in the
present study for the following reasons:

1. The B3P fi X1Sg
+ transitions in N2 are well known

experimentally.
2. Although there are studies on the N2(X

1Sg
+)–He(1S)

ground-state system [13, 14], there is only indirect
evidence for the formation of the excited N2(B

3Pg)–
He(1S) complex.

High-level ab initio calculations in the framework of
the supermolecule approach were performed to deter-
mine the interaction of N2(B

3Pg) with He(1S) at the
unrestricted HF-SCF and the fourth-order unrestricted
MP level of approximation (UMP) for the total energy.
The IE through fourth order in UMP is then obtained as

IEUMPð4Þ¼ IEUHF�SCFþIEUMP2þIEUMP3þIEUMP4: ð6Þ

Ab initio calculations of open-shell vdW complexes
have been traditionally accomplished using multideter-
minant wave function methods, which in general impose
severe demands on the computational resources (in time
and storage). UMP represents an alternative size-consis-
tent economical method available for reliable calculation
of IEs [26, 27, 28]. The necessary UMP correlation ener-
gies are all calculated by means of the Gaussian 98
molecular package [25] using the basis set described in the
previous section. Geometry optimizations were carried
out with respect to the intermolecular parameter R for all
three conformers with b=0, 45 and 90�, respectively.

In contrast to the closed-shell MP procedure, the
counterpoise open-shell calculations reported in this
section cause additional complications. The valence
electron configuration of N2 in its first 3P electronic
excited state corresponds to (1pu)

4 (3rg)
1 (1pg

*)1. The
degeneracy of the 1pg

* orbital is removed by the He atom
for any nonlinear conformer of the molecular vdW
complex, giving rise to the A¢ and A¢¢ (in Cs symmetry)
states, respectively [29]. The 3A¢ state corresponds to
a configuration where the electron is occupying a 1pg

*

orbital located ‘‘parallel’’ to the N–N–He plane. In the
3A¢¢ state, the electron is occupying a 1pg

* orbital located
‘‘perpendicular’’ to the N–N–He plane. All the calcula-
tions reported in the present contribution are based on
the Born–Oppenheimer approximation and provide
adiabatic interactions for the A¢ and A¢¢ states. Spec-
troscopy experiments do not probe such states because
one has to account additionally for the spin–orbit cou-
pling, which leads to interaction among the previously
mentioned adiabatic states. In this particular case, a
proper formalism for bound states accessible in spec-
troscopy has been set forth by Dubernet et al. [30] in the
atom–diatom case, where the diabatic interaction can be
represented as the average of the A¢ and A¢¢ interaction
potentials. In the present contribution we have repre-
sented the N2(B

3Pg)–He(1S) interaction potential on

N2–He as the average among the corresponding
N2(

3A¢)–He(1S) and N2(
3A¢¢)–He(1S) states.

Another problem related to applying the supermo-
lecular UMP method to open-shell molecular systems is
the spin contamination, which has to be small and of
about the same magnitude within the N2–He dimer and
the N2 monomer [26, 31, 32]. In all our calculations the
spin contaminations were small, i.e., <S2> was equal
to 2.02 in the triplet state for both N2–He and N2 in the
DCBS.

The calculated Re and De values in three different
geometries represented by b=0, 45 and 90 �, respec-
tively, for the N2(B

3Pg)–He(1S) electronic state of N2–
He are shown in Table 1. As for the ground state, Re and
De were also obtained here by fitting the calculated fully
ab initio MP IE points to an eighth-order polynomial in
the stretching coordinate R, analytically continued with
a seventh-order polynomial on 1/R (from 1/R6 to 1/R12)
in the asymptotic R fi ¥ region. Table 1 reveals that, at
the UMP(4) level of approximation used and for all the
states and geometries explored in the present study, the
T-shaped structure represents the stablest conformation,
followed by the linear conformation, while the least
stable geometry is always represented by the structure
with b=45�.

In order to test the convergence of the perturbation
series involved in the previous results, we calculated the
IE at the CCSD(T) level of theory for the (Re, be) points
already found as the minimum energy points at the MP4
level of approximation. The calculated CCSD(T) IE is
only 0.24 cm)1 deeper for the ground N2(X

1Sg
+)–He(1S)

interaction at Re=3.44 Å and be=90�. Similarly, the
CCSD(T) IE is only 0.18 cm)1 less stable for the excited
N2(B

3Pg)–He(1S) interaction at Re=3.25 Å and
be=90�. These results imply that the inclusion of itera-
tive excitations seems to have a marginal effect upon the
N2(X

1Sg
+)–He(1S) and N2(B

3Pg)–He(1S) interactions.

Our final N2(X
1Sg

+)–He(1S) fi N2(B
3Pg)–He(1S)

vertical excitation spectra for N2–He in its T-shaped
ground-state and excited-state configurations is depicted
in Fig. 2. Vibrational energies were calculated from the
fitted potential curves using the numerical Numerov–
Cooley procedure [33] by treating N2–He as a diatomic
system with only one degree of freedom R. This proce-
dure shows that for the ground N2(X

1Sg
+)–He(1S)

electronic state (lower curve in Fig. 2) the calculated
dissociation energy corresponds to a Do value of
7.07 cm)1, with at least one vibrational state supported
by this T structure. The present calculations also show

Table 1. Equilibrium bond distance, Re, and well depth, De, as a
function of b (degrees) for N2(B

3Pg)–He(1S) at the UMP(4)/
POL+GLS+BF level of theory

b Re (Å) De (cm
)1)

90� 3.25 36.85
45� 4.05 13.69
0� 3.97 34.46
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that the minimum of the excited N2(B
3Pg)–He(1S) triplet

interactions (upper curve in Fig. 2) occurs atRe=3.25 Å,
De=36.85 cm)1 and Do=17.06 cm)1, with only one
vibrational state supported by this T-shaped structure.
The present calculations also indicate a redshift of
9.99 cm)1 for the N2(X

1Sg
+)–He(1S) fi N2(B

3Pg)–
He(1S) vertical excitation energy, with respect to the
corresponding N2(X

1Sg
+) fi N2(B

3Pg) excitation in the
absence of He.

In more detail: the excited N2(B
3Pg)–He(1S) triplet

interaction minima occur at Re=3.18 Å and
De=39.89 cm)1 for the ‘‘parallel’’ N2(

3A¢)–He(1S) state
and at Re=3.25 Å and De=29.23 cm)1 for the "perpen-
dicular" N2(

3A¢¢)–He(1S) state, the A¢ level being stabler
by 6.91 cm)1. The large A¢¢–A¢ splitting and relative
ordering obtained for the T-shaped structures examined
in this study did not change significantly when a more
correlated CCSD(T)methodwas used, which implies that
there is indeed a significant variation in the interaction
between a N2 molecule in its electronic 3P excited state
and a He atom when the unfilled p* orbital is parallel or
perpendicular to the N–N–He plane. This result is in
agreement with experimental results on the cross-sections
for rotationally inelastic collisions of N2(B

3Pg) with Ar
[12], where it is argued that the diffuse antibonding 1pg

*

orbital has a significant effect on the N2–Ar interaction.
The deeper minimum found in connection with 3A¢
(compared to the 3A¢¢ state) in the T-shaped geometry
examined in this study also reveals that this region is
dominated by the dispersion interaction of He with the
N2 molecule in its electronic 3P excited state, since this
attractive interaction will be stronger when the singly
filled 1pg

* electron lies in the N–N–He plane.

Density functional theory representation of the excited
states

In view of the recent successfully reported study on the
structure and bonding properties of the ground
N2(X

1Sg
+)–He(1S) electronic state by means of the

mPW1PW exchange–correlation functional using density

functional theory (DFT) local-spin-optimized atom-cen-
tered basis sets complemented with BFs optimized at the
mPW1PW level of theory [34], we decided to perform
similar test calculations on the excited N2(B

3Pg)–He(1S)
electronic states of N2–He, which are to be compared to
the ab initio UMP(4) reference calculations presented
already in a previous section. The present excited-state
calculations are always possible within DFT since it
corresponds to the 3P symmetry level of lowest energy.

DFT calculations were performed in the framework
of the supermolecule approach by applying the Kohn–
Sham formalism [35], where the IE was defined as given
by Eq. (3), i.e., by applying the counterpoise procedure
of Boys and Bernardi [15] to correct for the BSSE at each
molecular configuration. The mPW1PW [36] exchange–
correlation functional was tested as implemented in the
Gaussian 98 molecular package [25] for the total energy.
In the DFT calculations, we used the TZVP and the
DZVP2 atom-centered Gaussian basis set for N and He
atoms, respectively, which has been optimized for local
spin DFT calculations by Godbout et al. [37]. They were
complemented with a basis set taken from the standard
BFs recommended by Tao and Pan [23, 24], but were
modified to increase the ground-state dispersion energy
interaction on N2–He at the mPW1PW level of theory
[34]. These DFT-optimized BFs are referred to here as
BF-DFT, and they consist of three s functions (expo-
nents 0.9, 0.3 and 0.1), three p functions (exponents 0.5,
0.3, 0.1), two d functions (exponents 0.4 and 0.2), one f
function (exponent 0.4) and one g function (exponent
0.4). The BFs were placed at the midpoint of the vector
R, which joins He with the center of mass of N2. Here,
we have also represented the N2(B

3Pg)–He(1S) interac-
tion potential as the average among the corresponding
N2(

3A¢)–He(1S) and N2(
3A¢¢)–He(1S) states.

The calculated Re and De values for b=0, 45 and 90�,
respectively, for the N2(B

3Pg)–He(1S) electronic state of
N2–He at the mPW1PW/TZVP+DZVP2+BF-DFT
level of theory [34] are shown in Table 2. It reveals that
at the mPW1PW level of approximation the T-shaped
structure represents the stablest conformation, followed
by the linear conformation, while the least stable geom-
etry is always represented by the structure with b=45�, in
agreement with the UMP(4) reference results presented
in Table 1. We can also observe relatively close De values
for b=45�, but the rest of the De values obtained for
different geometries using the mPW1PW1 functional are
far from their UMP(4) counterparts. It also shows Re

values systematically larger at the mPW1PW level of
theory compared to the present perturbation reference
calculations.

Fig. 2. N2(X
1Sg

+)–He(1S) fi N2(B
3Pg)–He(1S) vertical excitation

energies for the T structure of N2–He

Table 2. Re and De as a function of b for N2(B
3Pg)–He(1S) at the

mPW1PW/TZVP+DZVP2+BF-DFT level of theory

b Re (Å) De (cm
)1)

90� 3.62 22.92
45� 4.09 15.02
0� 3.98 21.87
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On the whole, the exchange–correlation functional
mPW1PW using the ground-state DFT-optimized BFs
[34] gives a qualitative representation of the IE of the
lowest 3P level of the N2–He van der Waals dimer,
although it still shows more anisotropic behavior, which
in turn produces highly stable T and linear structures
compared to the UMP(4) reference calculations pre-
sented. No further steps were taken to improve these
values at the mPW1PW level of theory by optimizing the
BFs for the excited state.

Final remarks

Although all points on the calculated IE curves are fully
ab initio, the present results are to be taken only as a
qualitative guide. Although the ground N2–He state
is very well represented compared with the available ab
initio results, this may not necessarily be the case for the
excited states examined here. In order to increase
the predictive value of Fig. 2, one has to investigate the
behavior of the present basis set to represent the electric
properties and correlation energy of the excited states
involved, using higher-level correlation benchmark cal-
culations as a comparison. Nevertheless, extending the
size of the present basis and using highly correlated
methods is very difficult to accomplish in practice,
mainly because these correlation energy calculations are
already extremely demanding on computational re-
sources (processing time and storage). Considering that
the long-term goal of the present study is to represent
a ‘‘complete IE surface’’ for several excited states of
interest, it will be useless to increase the size of the basis
sets and use high-quality electron correlation methods.
At present, it would be more advisable to investigate
the use of less-demanding DFT methods in order to
undertake such a challenging task.
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